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1 Introduction

This thesis will explore pairwise preference, a concept with applications in
political science, economics, social science, and machine learning (Wauthier,
Jordan, and Jojic, 2013, Arrow, 1970). A “pairwise preference” is simply a
preference for one item over another, given two items.

We will argue that such a representation is capable of capturing human
subjectivity accurately and precisely. We will also show that this repre-
sentation is highly general, and that problems posed in this framework are
amenable to many kinds of analysis.

The choice to explore this representation was motivated by a particular
reading of the history of science. In the theoretical context section, we will
review aspects of this history and attempt to discern some key themes. This
section will motivate our investigation of pairwise preferences and predict
some desirable theoretical properties.

In the mechanics section, we will present the basic elements of preference
graphs. We will demonstrate methods of analysis, drawing on tools from
probability and linear algebra. We will show how a large class of preference
resolution problems can be set up within this general framework.

In applications, we will develop various algorithms for analyzing these
types of graphs, and discuss their strengths and limitations.

In future directions, we will identify additional avenues of exploration.
There are particularly interesting possibilities involving blockchain-based vir-
tual machine (BBVM) technologies like Ethereum.
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2 Theoretical Context

This section will introduce some broad and fundamental ideas, ultimately
rediscovering some key aspects of what is known as process philosophy.

To begin, we will develop the problem’s context, drawing on work from a
variety of fields, including cognitive science, computer science, mathematics,
philosophy, and political economy. In addition, we will look at past and
current events to attempt to bring the current historical moment into focus.

Our argument will proceed as follows:

• First, we characterize the problem of human social organization through
the lens of resources and technology.

• Then, we describe a fundamental link between representation and anal-
ysis, incorporating ideas from information theory and statistics.

• We then turn to the role of analysis in society, and discuss ways in
which analysis can fail.

• Next, we connect ideas from philosophy and cognitive science, empha-
sizing the relational property of subjective mental concepts.

• Finally, we conclude that pairwise preferences are well-suited to the
task of measuring and analyzing subjective preference.

2.1 A Schematic View

Man is not an ant, conveniently equipped with an inborn pat-
tern of social instincts. On the contrary, he seems to be strongly
endowed with a self-centered nature. If his relatively weak physique
forces him to seek cooperation, his inner drives constantly threaten
to disrupt his social working partnerships.

- Robert Heilbroner, The Worldly Philosophers, p18

Let us consider the problem of nonviolent coordination at scale. Let us
view this is a problem of preference resolution, and preference resolution as
a problem of information flow.

In small communities, such as groups of friends, information flows easily
across the human medium of language, and these communities are generally
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seen as capable of peaceful, mutually-beneficial coordination. They resolve
preferences easily, with few resources, and the results are generally satisfac-
tory (Deacon, 1998).

As communities grow larger, the amount of information increases and
preferences become more complex and difficult to resolve. Further, language
loses efficiency as meaning fluctuates across groups. This increase in problem
scale and decrease in language efficiency leads to a need for new structure
(such as a government) to manage this process and coordinate the members
(Hobbes, 1982). Supporting new structure requires additional resources, or
alternatively a more efficient utilization of existing resources. If the com-
munity cannot acquire new resources or technology, we can expect the com-
munity to fracture, or for the nature of the coordination to become more
oppressive, at least for some members of the community (Eisenberg, Muck-
enhirn, and Rudrane, 1972).

The use of the term “non-violent” might (reasonably) seem to suggest that
its absence implies violence; we choose to interpret it less dramatically as a
loss of personal freedom. Consider a bleak workplace, in which workers have
relatively little control over their work (B. Y.-J. Lin et al., 2013). Consider a
bronze-age empire, in which large public works projects were built by coercing
large segments of the population into service (Heilbroner, 1999).

This is the schematic relationship: scale and nonviolence are opposed,
given a fixed level of resources and technology. Additional resources or more
efficient structure can allow nonviolent coordination at a larger scale. “Struc-
ture” can refer to both objective social forms (such as democratic institu-
tions), or the organization of mental concepts (such as the notion of “democ-
racy”).

This last century has seen great advances both in terms of resources and
technology. The majority of the preference-resolution structures found in
liberal democracies predate these developments. It would seem reasonable
therefore that there exist some number of viable preference-resolution frame-
works waiting to be developed. Experiments in developing these frameworks
are ongoing. Recent success includes the use of the liquid democracy frame-
work pol.is in Taiwan (Barry, 2016) and various applications of the suite of
tools developed by the Stanford Crowdsourced Democracy Team (Lee, 2015,
Aitamurto et al., 2016).

It is just such a framework that we will attempt to develop. Our first
step will be to establish and explore the fundamental relationship between
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representation and computation, showing that choice of representation has
meaningful consequences for speed and quality of analysis.

2.2 Representation and Analysis

2.2.1 An Historical Example

Our modern base-10 numbering system, commonly known as the “Arabic”
numbering system, has roots in in both the Middle East and India. Originally
developed in India, this numbering system was brought to the Middle East
by (among others) the 9th-century Persian mathematician Al-Khwarizmi,
via his On the Calculation with Hindu Numerals. Fibonacci, a 13th-century
Italian mathematician, became aware of this text and became an advocate for
this numbering system, arguing for its adoption in place of Roman numerals
in his Liber Abaci (Ore, 1988 Ferguson, 2009).

Prior to the adoption of Arabic numerals, mathematics was done us-
ing Roman numerals (Heilbroner, 1999 Gowers, Barrow-Green, and Leader,
2008). Roman numerals, while adequate for counting and basic addition and
subtraction, were unwieldy for more complex operations like multiplication
and division; hence the widespread use of the abacus as a computational
tool. To practitioners of this era, such operations would likely have been
seen as “advanced”; problems involving these operations would have been
“difficult”. The adoption of the Arabic system allowed for previously chal-
lenging computations to be performed quickly, easily, and accurately; leading
to an overall acceleration in the pace of mathematical development.

In the parlance of machine learning, we could argue that the abacus rep-
resents an optimization within a local optimum; the adoption of the new
numbering system represents an escape from that optimum. In this histor-
ical anecdote, we see a demonstration of a fundamental relationship: that
between representation and analysis. Analytical methods are defined in
relation to one or another representation; changes in representation imply a
change in the set of available analytic operations. In addition, observe that
changes in representation have no impact on the underlying world; noth-
ing about the world changed to make multiplication easier. These types of
paradigm shifts occur with infrequent regularity in the sciences, and are a
feature of scientific progress (Kuhn, 1996).
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2.2.2 Contemporary Examples

More routinely, the notion of transforming from one representation to
another appears often in the computer science and industrial engineering
literature; in the former, pertaining to problems and the algorithms which
solve them, and in the latter, to optimization.

In computer science, a problem is said to reduce to another if it can be
shown that an instance of the first can be transformed into an instance of
the second, while preserving truth conditions.

In optimization, there exists significant literature concerning solving prob-
lems represented in specific constrained (convex) forms: problems defined in
these ways can be solved by computer relatively quickly and precisely. Much
of the skill in this field is being able to identify how a problem represented
in some (arbitrary) form can be transformed into an equivalent convex opti-
mization problem.

An problem that may be difficult to analyze in one form may become
easy to analyze if converted into a different but provably equivalent form.
The ability to discern these relationships among problems is a key skill for
researchers in these fields.

As observed by British computer scientist Philip Wadler Wadler, 2015:

Powerful insights arise from linking two fields of study pre-
viously thought separate. Examples include Descartes’s coordi-
nates, which links geometry to algebra, Planck’s Quantum The-
ory, which links particles to waves, and Shannon’s Information
Theory, which links thermodynamics to communication.

For a more current example, we can look at recent development in ma-
chine learning. Graphical models, a formalism for representing and analyzing
complex joint probability distributions as graphs, allowed for the mixing of
analytic techniques from both statistics and computer science. Problems that
are difficult to solve for a probability distributions are may be easy to solve
for an equivalent graph, and vice versa (Wainwright and Jordan, 2008).

An important clarification is that for problems which can in principle
be solved in several representations, one representation may allow for faster
solutions. This is important because problems requiring hours or months
of computation to solve are essentially unsolvable for applications needing
results in minutes or days.
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An interesting (but speculative) example comes to us via studies of the
Wason selection task, in which participants are asked to solve logical reason-
ing problems by flipping cards. Experiments have shown that such problems
are difficult when presented abstractly, but become significantly easier when
presented in terms of common social reasoning tasks (Cosmides and Tooby,
1992), suggesting that the link between representation and analysis extends
to cognition.

We can extend this notion of representation and analysis to more general
domains. Natural language is a representation; the written word can be read
and interpeted, but not analyzed with the precision of mathematics. Images,
music, and so on are also representations; each representation permits some
modes of analysis and eliminates others.

In machine learning and optimization, it is very common to represent
data as points in high-dimensional space. A car, possessing weight, accel-
eration, horsepower, mpg, and year, can be thought of as a point in the
five-dimensional space positive orthant, denoted R5

+. Such representations
allow for analysis using all of the tools of geometry and linear algebra. These
tools are powerful; much research has been conducted on methods for em-
bedding non-numeric data types into these types of space, for example via
collaborative filtering or word embedding (Mikolov et al., 2013 Koren, Bell,
and Volinsky, 2009).

2.3 Mutual Information and Utility

Let us place the concepts of representation and analysis on formal footing.

2.3.1 The Data Processing Inequality

If you have three variables, {X, Y, Z}, existing in a Markov relationship
such that X affects Y , and Y affects Z:

X → Y → Z

Then the mutual information (intuitively, the amount one variable tells
you about another) between Z and X can never be more than the mutual
information between Y and X:

I(X;Y ) ≥ I(X;Z)

8



This is known as the data processing inequality (Cover and Thomas,
2006), because we can think of X as some sort of “true” world, Y as some
data (measurements) taken of the world, and Z = f(X) is the result of some
analysis process f we perform on those measurements. The data processing
inequality states that no amount of analysis can produce information about
the world not already present in the data itself.

At first glance, this may seem problematic — after all, what is the point of
data analysis if we can’t learn anything new? To understand why this makes
sense, we need to think of an analysis f not as providing new information, but
rather as taking existing information and converting it into a more applicable
form. Consider an average over n measurements:

f(X) =
1

n

n∑
i=1

Xi

The average contains less information than the original data (for exam-
ple, by discarding all information concerning variance), but is nonetheless a
concise and useful summary of an important aspect of the data.

This result has several implications. First, it allows us to frame the
general problem of optimization and machine learning as an exploration of
the space of possible data analyses. To illustrate this, let us present the data
processing inequality in the language of machine learning:

Y → X → Ŷ ⇒ I(X;Y ) ≥ I(Ŷ ;Y )

Here, we have the standard notation of Y representing the true, unob-
servable world; X represents some data set of measurements taken from that
world, and Ŷ = f(X) representing the result of some analysis f , which may
be, among other things, prediction, classification, or structural description
of the data X.

Problems in optimization and machine learning are generally represented
in a common form: we have some goal, represented via a real-valued objective
or loss function. This function calculates some key metric, like the likelihood
of a prediction or the magnitude of an error. With this function, we can then
compare various candidate data analyses, and select the one which does the
best (by minimizing or maximizing this metric). Formally, if we think of L
as our objective function, and f being an analysis, then we are looking for
an optimal analysis f ∗ such that:
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L(f ∗(X)) ≥ L(f(X))

∀f ∈ F , with F representing the set of all possible analyses. When L is
some type of error metric, we are likely optimizing some (potentially convex)
function. When L is a type of likelihood, we are likely performing some form
of statistical parameter estimation. The role of L is important, in that it is
often the derivatives of L that allows us to explore F . Much research in these
fields can be seen as concerning itself with 1) developing new methods for
exploring F , and 2) developing new functions L to facilitate progress with
(1).

2.3.2 Measurement

Ultimately, our goal is knowledge: information about the world. Taking
the temperature with a thermometer, tagging animals in wildlife preserves,
and writing essays can all be seen as efforts to represent symbolically — to
measure — some aspect of the world. The first key idea is that measure-
ment and representation are fundamentally linked: a measurement is only
interpretable as a form of symbolic representation. The second key idea,
proven by the data processing inequality, is that advances in measurement
expands the space of possible analyses; conversely, the power of analyses is
upper-bounded by the power of measurement.

For an historical example, consider the history of oncology. In attempting
to study cancer, progress was made most rapidly for Leukemia, largely due
to the ease with which cancer could be measured in the blood (Mukherjee,
2011).

For a timely real-world example, consider the ubiquity of mobile phone
cameras and the influence such cameras have had on police accountability.
Ostensibly, police have been abusing minority populations for decades, if not
for centuries or even millennia. Progress on this issue was slow, in large part
due to difficulty in measuring the problem.

Soon after mobile phone cameras became commonplace, reporting (mea-
surement) of police violence increased dramatically, giving rise to national
protest and the well-organized and influential Black Lives Matter movement.
In this example, it is easy to see how the critical factor was not change in
the underlying world, nor exclusively the development of better organizing
techniques, but rather innovations in methods of measurement.
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Formally, let us think of a representation r ∈ R as a process applied to
the world Y , resulting in some objective measurement (data) X , r(Y ).
The world is always at least as complex as the measurement (consider the
example of a map vs a territory: a perfect map would necessarily be the
size of the entire territory). Most measurements are therefore information-
discarding; our goal is therefore to find the measurement which discards the
least information.

Given two measurements r1, r2 ∈ R, if r1 captures more information,
then:

I(Y ; r1(Y )) > I(Y ; r2(Y )).

If would prefer to think of all r as random functions (to incorporate the
notion of measurement error), then the relation becomes:

I(Y ;E[r1(Y )]) > I(Y ;E[r2(Y )]).

We cannot actually evaluate I(Y ; r(Y )), as Y is not available for analysis
except through r(Y ); it is necessarily a unknowable object. This does not,
however, mean that r is beyond study. Rather, we will evaluate r indirectly,
by seeing how it impacts downstream analysis.

The key point is that it may always be possible to find a better r∗; the
existence of such an r∗ cannot be disproven.

Recalling the data processing inequality and our historical examples, we
see how transforming between representations does not increase information;
rather, it allows for new kinds of analysis of existing information. We can
think of the process of transformation as applying a function

g : X → X ′

g ∈ G, which maps representation X to X ′. If this function is injective
(or “one-to-one”), then both representations contain the same amount of
information. The conversion between graphs and matrices is an example of
this type of transformation.

If the function is not injective, then information will be lost during the
transformation. This transformation may still be desirable (and often is) if
the target representation allows for more valuable task-specific analysis. The
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conversion of natural language into a bag of words is an example of this type
of transformation.

Formally, we can say that

I(Y ;X) ≥ I(Y ; g(X))

∀g ∈ G. With this result in hand, it may seems like transforming between
symbolic representations is pointless. However, it may be the case that a
transformed representation permits analysis in away the original does not.

Analysis of text often falls in this category. Many techniques for textual
analysis rely on conversions of large blocks of text into many small entities:
either single words (bags of words) or local word groups (n-grams). These
entities are then counted, and the statistical properties of these counts are
analyzed.

These types of analyses have yielded valuable results: Markov models
of language and topic models are just two examples (Blei, Ng, and Jordan,
2003). We can also think about recommendation systems, in which individu-
als and items are typically embedded into high-dimensional Cartesian space,
as a type of representation transformation (Koren, Bell, and Volinsky, 2009).

The utility of these models is hard to capture in the language of mutual
information, as it is always true that:

I(Y ; r(Y )) ≥ I(Y ; g(r(Y ))) ≥ I(Y ; f(g(r(Y ))))

To represent the utility of task-specific analysis, we will posit a task-
specific utility function Ut, whose domain is any arbitrary analysis, and range
is R. This utility function is left intentionally general and can incorporate
many factors, such as computability. The subscript t reflects the notion that
utility is interpreted as a function of time (or more concretely, computer
instructions).

For a concrete example, let us consider the classic problem of sorting.
Consider an unsorted array X of n integers, which we would like to sort.
We will compare two algorithms: insertion sort, denoted fi, and quicksort,
denoted fq. As insertion sort runs in time O(n2) and quicksort runs in time
O(nlogn), we can say that:

UO(nlogn)(fq(X)) = UO(n2)(fi(X))

Further, we can say that:
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UO(nlogn)(fq(X)) ≥ UO(nlogn)(fi(X))

This example illustrates another important point: although we introduce
f as a very general function, utility is evaluated only with respect to concrete
implementations. Observe that an analysis f ∈ F assumes a particular
representation as input; we make our notation more concise by subscripting:
fg ∈ Fg.

For a second concrete example, let us consider the basic problem of in-
dexing. We have a linked list X of n elements, and will need to repeatedly
access arbitrary elements by position. We have three functions: gl→a, which
converts a linked list to a contiguous array, fl, which indexes over a linked
list, and fa, which indexes over an array. gl→a has complexity O(n), fl has
complexity O(n), and fa has complexity O(1). We can see that, for a single
access:

UO(n+1)(fa(gl→a(X))) = UO(n+1)(fl(X))

If we need to access elements k times, however, we will find that (assuming
that gl→a(X) is evaluated only once):

UO(n+k)(fa(gl→a(X))) = UO(nk)(fl(X))

We see how the transformation of representation can yield benefits in
terms of utility over time. Complexity analysis is nothing new; the value of
this notation is the easy extension to approximate algorithms, which converge
arbitrarily close to the “true” answer over time. This notation also allows us
to compare different classes of algorithms. In image recognition, for example,
deep neural networks have been shown to outperform most other algorithms,
in terms of classification accuracy These algorithms, however, are relatively
slow to train. Ut allows us to compare these algorithms in a new way: a neural
network might have more utility over a long time horizon, but a simpler
algorithm could have higher utility if time were limited.

The problem is therefore one of finding a transformation and analysis
pipeline f ∗g such that, ∀fg ∈ Fg:

Ut(f
∗
g (X)) ≥ Ut(fg(X))
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In optimization, for example, problem constraints are often “relaxed”
to allow for fast solutions which assume convexity. We can think of these
relaxations as information-discarding transformations which increase overall
utility by allowing for fast analysis. Incorporating notation from earlier, we
are ultimately interested in functions r∗ and f ∗g such that:

U(f ∗g (r∗(Y ))) ≥ U(fg(r(Y )))

∀r ∈ R, ∀fg ∈ Fg. Ranging across all g and f , we see that for each
task-specific utility U , it may always be possible to develop some new r∗

such that:

U(fg(r
∗(Y ))) ≥ U(fg(r(Y ))).

In other words, in addition research in methods of analysis (f , L), we
can conceive of research in methods of representation and measurement (r,
g). The development of new measurements has the potential to unlock more
powerful types of downstream analysis, by capturing more information about
the underlying world. Note that we have not shown that:

I(Y ; r′(Y )) ≥ I(Y ; r(Y ))→ Ut(f
′
g(r
′(Y ))) ≥ Ut(fg(r(Y )))

for some f ′g, fg ∈ Fg. This is due to the varied interaction between rep-
resentation and computability; there is no guarantee that an information-
capturing representation will be easier to analyze; the opposite may be true.
However, a high information-capturing representation can always be con-
verted into a simpler form; better measurements can only improve overall
analytic ability.

In 1984, statisticians Persi Diaconis and David Freedman published a
paper on the topic of “projection pursuit”. In this paper, they show that
an arbitrary projection of a high-dimensional random variable into a lower-
dimensional space will with high probability exhibit a Gaussian distribution,
regardless of the distribution of the original random variable (Diaconis and
Freedman, 1984). The Gaussian, or “normal”, distribution, is the maximum-
entropy distribution for a random variable, given the variance of that vari-
able. Put another way, a variable that is normally distributed contains less
information than one with any other continuous distribution. Put yet an-
other way, projection into lower dimensions very likely discards information.
Put a final way, the process of measurement itself can be seen as a process of
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projecting information from some complex, unknown space (the true world)
onto a finite-dimensional representational space; necessarily, information is
lost.

This is unfortunate. The benefits of projection (which can be thought
of as data compression) are great: data becomes smaller and easier to store,
transmit, and analyze. If the original data has special structure which can be
exploited, compression can occur (using techniques such as Principal Compo-
nents Analysis or gZip) with as little as zero information loss. In other cases,
as first shown by Johnson and Lindenstrauss, random data compression can
occur with acceptable loss of information (Dasgupta and Gupta, 2002).

The takeaway is that compression is more effective when it can exploit
any special structure of the object in the original space. In the context of
this argument, we conclude that measurement is more effective when the
representation captures accurately any special structure of the aspect of the
world being measured.

Glossary
R: Set of all measurement processes r : Y → X
G: Set of all transformations g : X → X ′

F : Set of all analyses f : X → f(X)

2.4 Economic History

Our story of representation and analysis is found in economic history.
Middle-age economies were simple. These economies, based largely on

barter and regional currencies, required participants to possess special do-
main knowledge of the region and the items involved in the exchange; par-
ticipants without this knowledge struggled to participate (Heilbroner, 1999).
The innovation of money price transformed economies by allowing for a stan-
dard, numeric representation of value.

This standard, consistent representation created the foundation for fur-
ther economic innovations. In the domain of bookkeeping, numerical prices
allowed for the development of double-entry bookkeeping, enable the devel-
opment and maintenance of business ventures on a larger scale (Ferguson,
2009). In the domain of finance, numerical prices allowed for the development
of mathematical models of risk, which themselves allowed for the develop-
ment of systems of loans and credit. The development of credit can be seen
as enabling the coordination of economic activity across not only space, but
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time. These innovations – made possible also by improved communications
technology – greatly increased the sophistication of human economic affairs.

The interpretation of price as a low-dimensional representation of infor-
mation has long been appreciated (although not phrased in those terms). Via
the mechanism of price, disparate independent entities are able to coordinate
activities; a revolution in economics came about when this type price-based
coordination was argued to contribute to communal progress. In his clas-
sic Wealth of Nations (Smith, 1776), Adam Smith described the “invisible
hand” which emerges from decentralized self-interested economic activity to
guide overall economic development.

Recognizing the challenge of a centralized measuring and analyzing of
economic information, Hayek and his conservative contemporaries defended
price-based free markets against Communist alternatives on the grounds that
price systems allowed information to flow rapidly throughout large and de-
centralized economies (Hayek, 1945). Central planners Hayek argued, would
fail to aggregate enough information to make optimal planning decisions.
Using the terminology developed earlier, we can think of the activity of hu-
mans in a market as constituting a measurement process r, projecting the
complexity of the world onto the single dimension of price.

In idealized settings, market-based coordination can be shown to be op-
timal (with regards to some accepted optimality criteria, of course). In his
classic paper “The Problem of Social Cost”, Nobel prize-winning economist
Ronald Coase demonstrated that, in the presence of perfect information and
zero transaction costs, problem involving externalities (like pollution) can be
solved optimally by market forces (Coase, 1960).

In his paper, Coase argues that, with perfect information about the ex-
ternalities and no transaction costs, entities will bargain amongst themselves
and ultimately arrive at a Pareto-efficient equilibrium, independent of the ini-
tial allocation of property rights. He goes on to argue that, given real-world
conditions of limited information about externalities and non-zero transac-
tion costs, such equilibriums cannot be expected to emerge solely from bar-
gaining between entities. Additional structures (such as governments and
legal systems) will be necessary, and such structures are biased towards ini-
tial holders of property rights, meaning that initial allocations of property
rights will influence final outcomes (as historical experience has shown to be
the case).
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In this example, we can also see an example of one of our schematic
relationships: that between cost and technology. A problem for Coase’s the-
ory is that externalities can be difficult, if not impossible to measure. To
accurately price and account for negative externalities like pollution, these
externalities must be accurately measured. Sufficiently precise measurement
may be impossible; else prohibitively expensive. Improvements in technology
(for example, in air or water sampling) should allow for more accurate mea-
surement of externalities as lower cost, which by our proposed theory will
allow more effective peaceful large-scale coordination (via a market system).

The strengths of markets are often appreciated; as are their drawbacks.
Observers of England’s industrial revolution were horrified by the living con-
ditions of urban workers. Although admittedly overlooking the bleakness
of rural life, critics of industrialization pointed out how little of the human
element seemed to be present in the economic calculus of industry (Heil-
broner, 1999). Observing the aftermath of the United State’s Great Depres-
sion, economist John Maynard Keynes realized that unaided free markets
would not necessarily bring about long-term economic growth. The insta-
bility of markets and their tendency towards crashes was observed by other
economists (Minsky, 2008).

Overall, we seem justified in concluding that the measure of price was
a radicaldevelopment, allowing for vastly improved communication and co-
ordination. However, the efficient metric fails to capture very important
information, and is therefore by itself insufficient for coordinating human
activity.

2.5 The Proxy Gap

Imagine we have a library, and we would like to know how many books the
library contains. We count the number of books (discrete objects, implicitly
defined as units of paper, binding, etc), and return the sum. Overall, a
straightforward process.

Now, imagine we have visitors to this library. These visitors read books,
and we would like to know how much they liked the books they read. We
might ask them to rate each book on a scale of 1-5. For each book, we average
these scores to return an aggregate score.

In the first example, there is little question about the legitimacy of the
measurement: although there is still possibility for error (perhaps two ad-
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jacent books are the same color and the shelf is poorly lit, and they are
mistaken for a single book), the result can generally be seen as legitimate
and authoritative. In the second case, however, there is room to question:
how well do these measurements reflect the true subjectivity of the readers?
In the first case, we were concerned with objective quantities; in the lat-
ter, subjective experiences, which are generally accepted as being difficult to
measure.

The notion of the relationship between the measurement and the con-
struct being measured is known as validity, and is central to social science.
Several notions of validity have been proposed over the years, with the notion
of “construct validity” having emerged as the central and overarching type of
validity (Cronbach and Meehl, 1955). Construct validity can be thought of
as the correctness of the conceptualization of the construct of interest (such
as “integrity” or “intelligence”), and the quality of the link between that con-
struct and the measure in question. Assessing construct validity is a jointly
theoretical and empirical task, with researchers appealing to various statis-
tical methods to show that the results of measures of a certain construct are
consistent and correlated (Campbell and Fiske, 1959). In the context of this
work, we can think of this necessary statistical tests as being an additional
layer of computation needed to ensure that the measure is truly information-
capturing. In the language of utility developed earlier, we can see this layer
of computation as decreasing the utility of this analysis by increasing the
amount of computation needed to return valuable results.

An instructive example comes to us via the Likert scale. A type of survey,
this scale consists of a number of Likert items, each asking the participant
to answer a question by checking boxes such as “Strongly Agree”, “Strongly
Disagree” and so on. Likert scales are popular for their ease of use, but are
controversial due to their (perceived) ease of abuse. Specifically, practition-
ers often treat this ordinal scale as an interval scale, and further assume an
equivalence between answer given and the quality of the subjective experi-
ence. These types of methodological errors can lead researchers to come to
erroneous conclusions (Jamieson, 2004). Here again, we see how this measure
necessitates an additional layer of statistical validation (such as ensuring that
the distribution of answers is normal or uniform) before interpretation.

Given the difficulty of representing and analyzing subjective experience
and personal qualities, a common practice is to rely on easily-measurable ob-
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jective proxies. American mathematician Cathy O’Neil discusses this practice
at length, reviewing the use of measurement proxies in domains as diverse
as education, hiring, credit, and criminal justice (O’Neil, 2016). One of her
main conclusions is that poorly-designed proxies facilitate the perpetuation
of existing race and class inequalities. Many have begun reaching similar
conclusions in the last few years; research into “algorithmic fairness” is new
and ongoing (Tramèr et al., 2015, Friedler, Scheidegger, and Venkatasubra-
manian, 2016).

Moving forward, we will refer to this gap between a measurement proxy
and the stated object of measurement as the proxy gap. Returning to the
library example, the book count has a proxy gap of (near) zero, as the mea-
surement accurately captures the aspect of the world it purports to measure.
The book ratings, however, have a meaningful proxy gap: there are aspects
of book preference which are not captured on a 1-5 scale.

Statistician David Freedman (1995) discusses an analogous concept:

Regression models are widely used by social scientists to make
causal inferences; such models are now almost a routine way of
demonstrating counter-factuals. However, the “demonstrations”
generally turn out to depend on a series of untested, even unartic-
ulated, technical assumptions. Under the circumstances, reliance
on model outputs may be quite unjustified. Making the ideas of
validation somewhat more precise is a serious problem in the phi-
losophy of science. That models should correspond to reality is,
after all, a useful but not totally straightforward idea — with some
history to it. Developing models, and testing their connection to
the phenomena, is a serious problem in statistics.

By definition, the proxy gap is a qualitative, not quantitative, property.
As such, we will use it as a tool for developing the arguments to follow, but
will abstain from attempting to incorporate it formally into analysis. Still,
the notion will be useful, as it provides a common frame with which to reason
about potential failures of mathematical models of the world.

2.5.1 Education

As an example, let us consider some aspects of the American higher ed-
ucation system.

19



Prospective undergraduates are faced with a choice of several hundred
possible universities – too many to reasonably research and evaluate. Clearly,
there was a need for some sort of summary assessment of school quality. In
1983, in response to a perceived need, the US News & World Report released
the first edition of their now-infamous college rankings (O’Neil, 2016). Taking
into account a number of factors, such as student test scores, acceptance and
retention rates, and alumni giving, US News generated a score, which it used
to rank schools. This ranking has, for better or worse, become a standard
measure by which colleges are judged.

These rankings became so influential that schools began going to ex-
treme (even illegal) lengths to improve their scores: lying about student test
scores, building multi-million dollar athletic facilities (increasing tuition costs
accordingly), and rejecting candidates deemed “unlikely to attend” (O’Neil,
2016). Observe that these changes have unclear, if not outright negative,
impact on “school quality”.

In this example, the proxy gap is the gap between the actual measure-
ments (student statistics) and the aspect of the world we are interested in
(“school quality”). Because of this gap, incentives are distorted and it be-
comes possible to game the system. Schools are able to rise in the rankings
without improving their quality, while other schools might fall in the rankings
even as quality of education improve, if the improvements do not manifest
in specific ways.

Standardized testing plays a huge role in controlling access to higher ed-
ucation. These tests exist at all levels of education (SAT for undergraduates,
GRE, LSAT, MCAT, GRE, and GMAT for graduate students). These tests
purport to measure academic aptitude for their respective courses of study;
they are each a proxy with an associated proxy gap.

This proxy gap has lead to large test preparation industries. In all cases,
prospective students can be found eagerly signing up for test preparation
courses, drilling practice questions and studying the standard structures of
the test in question. Students with access to resources (such as preparation
courses) generally perform better; thus, critics say that these tests are at
least in part measuring socioeconomic status (Zumbrin, 2014).

In these examples, we see how the issue of legitimacy of measurements
becomes a major issue. Measurements exhibiting large proxy gaps are easier
to challenge as illegitimate. This illegitimacy becomes a source of tension,

20



as the illegitimacy of measurements calls into doubt the legitimacy of the
systems built on those measurements. As data and data processing becomes
increasingly central to our activities, we should be attuned to the issue of
legitimacy in modeling.

What insights can we draw from the examples given? A general theme is
a desire to measure subjective qualities. In light of the earlier discussion on
representation and measurement, it would seem we would benefit from some
representation able to capture this subjective quality. Representations of
subjectivity exist already: language and art being two important examples.
In fact, language was the first symbolic representation, far predating any
mathematical symbolism.

What these representations lack, however, is formality. The formalisms
of mathematics have allowed for the precise communication of fantastically
complex ideas. It should seem that we would like a representation combining
the formality of math with the subjectivity of language.

2.6 Dialectical Processes

To develop our argument, we must first introduce some ideas of Hegel.
A german “idealist”, Hegel believed that concepts, and human conceptual
structures, played a key role in determining the course taken by society. Con-
trast these ideas with those of materialists, such as Marx, who believed that
resource constraints ultimately shaped social forms. Historical experience
has, fortunately, shown that both views contains much truth; the experience
of the Anabaptists in Munster following the Protestant Reformation (Carlin,
2013) shows clearly the power of ideas in shaping events, while the experience
of the Israeli Kibbutzim points to the power of material conditions.

In developing his theory of ideas, Hegel articulated the concept of a di-
alectic. In a dialectical process, we begin with an idea, known as the thesis.
In contraposition to the thesis, there emerges an opposing idea, known as
the antithesis. Thesis and antithesis engage in tension, the space between
them one of paradox. This tension is ultimately resolved into a new idea,
the synthesis. This synthesis then plays the role of thesis to begin a new
dialectical process. Hegel contended that this process was helical, and thus
contributed a forward momentum to human affairs.

We note that Hegel himself did not use the language of thesis-antithesis-
synthesis, but rather spoke of abstract-negative-concrete.

An important aspect of a dialectic is that the thesis and antithesis are
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in opposition to each other, but neither is “correct” or “incorrect”. We
experience dialectics regularly in our lived experience:

1. Freedom vs Security 1

2. Individual vs Community 2

3. Change vs Stability 3

4. Process vs Outcome 4

5. Society vs Markets 5

The recurrence of these themes in theater and literature attests to the
fundamental role the dialectical structure plays in our shared and individual
experiences.

Fundamentally, a dialectic is a paradoxical space between two contradic-
tory extremes. Resolving these tensions is an important part of our decision-
making process. As an example, we can view any political process (or smaller
scale group decision-making processes) as being exercises in resolving these
tensions into concrete actions.

Contrast a dialectic dimension with something like R, the real line. R is
also a space in between two extremes: −∞ and ∞. The key difference is
that numerical space is well-defined, while dialectical space is by definition
contradictory.

We argue that concepts are ultimately relational in nature, and that at-
tempts to represent them in reference to some absolute scale inevitably obfus-
cates important aspects of their character.

The Hegelian dialectic is not without critics. Karl Popper, an eminent
philosopher of science, has attacked dialectical thinkers for their willingness
to accept, if not outright invite, contradictions (Popper, 2002). Popper,
famous for his notion of “falsifiability” as a prerequisite property of valid
scientific theories, felt that such conceptions of history were impossible to
invalidate.

1As Benjamin Franklin has famously said.
2A common tension in politics.
3Consider the scaling of organizations.
4Consider various decision-making systems.
5This particular relationship is the principal subject of Karl Polanyi’s The Great Trans-

formation, a highly-regarded work of political economy (Polanyi, 1944).
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We resonate with Popper’s emphasis on falsifiability. Further, we agree
with Popper’s argument that contradictions are valuable primarily for their
value in helping organizing our collective effort towards their resolution.
We believe a dialectical understanding is not in conflict with the scientific
method, each being appropriate for making sense of one or another aspect of
our experience. Going further, we speculate that by continuously attempt-
ing to understand and resolve these paradoxes, dialectical distinctions can be
made successively more nuanced. We can imagine this as a recursive process,
by which distinctions are made nuanced, giving rise to further distinctions
and further opportunities for nuance; this can be seen as the ideation process
itself.

Returning to our earlier political example, it is easy to see dialectical
tensions in the two-party system of the United States. In the legislature,
major dialectical themes such as “progress vs. stability” shape debate. For
the development of a specific policy, however, we should abhor contradiction;
the budgets should balance.

The popular Myers-Briggs Type Indicator provides a useful case study
of the power and pitfalls of the dialectical understanding. This test asks a
subject a series of questions, and then places them into one of two binary cat-
egories, along four axes. Subjects are encouraged to see these categorizations
as providing insight into their personality and their interactions with others.
This test appears often in popular culture and in business, and this popular-
ity self-evidences the test’s appeal. Clearly, many find the test’s structuring
to be a valuable aid in their own thinking.

The test is not without critics. Primary criticisms include low test-retest
reliability, and of oversimplification and misunderstanding of complex per-
sonality traits. These criticisms point to two important aspects of dialectical
thinking:

1. Any particular dialectic relationship represents a particular level of ab-
straction; any dialectical relationship can be made more nuanced. This
relates to the dynamic, process-like nature of the dialectical relation-
ship.

2. Individuals experience reality differently. Descriptions of dialectic re-
lationships are at best modal, in that they describe common aspects of
the experience of many, but not all.
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In seeking dialectical structure, the goal cannot be to learn a fixed and
absolute structure. Rather, the goal must be to learn the particular task-
specific structure (in terms of level of nuance) appropriate for the entities
involved.

2.7 Concept and Distinction

Having introduced the sweeping notion of the dialectical process, how
might we continue forward in developing a concrete theory? It is too much
to hope to be able to represent and formally analyze grand and abstract
dialectical relationships. What do we take with us?

First, we take the idea of distinction, and take the notion of making dis-
tinctions between concepts as a fundamental operation. Recalling momen-
tarily our history of economics, we observe that it was not until the economic
realm was distinguished from the social and political realm could economic
thinking take full flight (Heilbroner, 1999). Next, we accept the idea of a
fundamentally process-like and relational nature of concepts; we should be
cautious of approaches which attempt to embed these concepts in an abso-
lute space. Then, we ask whether these notions of distinction and relation
can be applied to concepts more concrete than the grand abstractions often
seen in introductions to dialectics.

Greek philosophers were preoccupied with understanding the true nature
of things. Heraclitus, a prominent pre-Socratic, believed that the true nature
of things was change: “you cannot step in the same river twice.” Socrates
and his students Plato and Aristotle felt differently: they felt that things
were fundamentally constant and unchanging nature: “if Socrates gets sick,
he is still Socrates.”

In his “Allegory of the Cave”, Plato defends this notion, arguing that
the wide variation of things seen in the world is due to of physical objects
being randomly-perturbed instantiations of constant, idealized types. This
Aristotelian orientation towards understanding phenomena in terms of fixed
and constant properties has had significant influence on the development of
science (Pirsig, 1975).

Fast forward two millennia. Leibniz dreamed of a language, characteris-
tica universalis, which could represent perfectly a wide variety of concepts in
the world. This language, Couturat (1901) writes, “would express the com-
position of concepts by the combination of signs representing their simple
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elements, such that the correspondence between composite ideas and their
symbols would be natural and no longer conventional.” Leibniz envisioned
a future where disputes were settled by representing the problem as sen-
tences in this universal language, and then simply calculating the answer.
“Calculemus!”, he would say: let us calculate.

Many logicians who followed would attempt to develop similar systems
for reasoning about discrete concepts and categories. Ludwig Wittgenstein,
however, recognized the impossibility of necessary and sufficient logical con-
ditions for categories, and instead developed the idea of softer “family re-
semblances” among groups of things.

As an aside, we can see unsupervised approaches in machine learning (K-
nearest neighbors, gaussian mixture models, and kernel-based approaches to
classification being notable examples) as attempts to emphasize this rela-
tional quality.

An especially illustrative example comes to us in the form of Alfred North
Whitehead. A British mathematician and professor, Whitehead wrote the
seminal Principia Mathematica with his student, Bertrand Russell. In Prin-
cipia, Whitehead and Russell sought to describe axioms and inference rules
via which all mathematical truths could be proven (Doxiadis and Papadim-
itriou, 2009). A monumental endeavor, it was nonetheless a failure. Kurt
Gödel, the German mathematician, showed that such systems were impossi-
ble: that any formal system contains unprovable truths (Hofstadter, 1979).
Later in his career, Whitehead came to believe in the superiority of a process-
based ontology, in which objects in the world are understood not in terms of
fixed, absolute characteristics, but rather as continuously undergoing change
processes. He would go on to write was has become the seminal text of
process philosophy, Process and Reality (Whitehead, 1979).

These lines of thinking eventually transitioned from philosophy to cogni-
tive linguistics, being pursued in the 1970s by the American linguist Eleanor
Rosch, eventually culminating in the development of Prototype Theory (Rosch,
1973, Rosch, 1975).

What Rosch found was that concepts tended to organize into hierarchies,
with general prototypes being more readily available for cognition than spe-
cific instances. These prototypes in general describe the salient aspects of the
object: the prototype tree captures a great deal of information about both
subordinate types pine and elm. Superordinate types fail to contain enough
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information: plant fails to capture enough salient properties.
A frequent characteristic of prototypes is a mono-syllabic name. Consider

car and tree, both succinct aural representations. Flower, while being bi-
syllabic, is descended from the monosyllabic Old French flor.

plant

tree

pine elm

flower

rose tulip

Figure 1: Example conceptual tree

object

tree

pine elm

car

honda ford

Figure 2: Alternative set of relationships

Rosch and others went on to show that culture and environment can effect
what individuals come to understand as “prototypical”; in other words, how
they come to distinguish experience. For an individual raised in a forest,
for example, the categories of pine and elm may in fact be prototypical
categories. For this individual, the differences between the two species are
more salient than their similarities. We can see this also in many professions:
professionals communicate in jargon, making distinctions unfamiliar to those
outside their field.

Rosch’s work sheds a clarifying light on the relational nature of concepts.
What distinguishes tree from elm is not any particular property
of elm, but rather the presence of pine. If pine did not exist, then
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elm would add no information above and beyond that provided by tree; elm
would not even exist.

American cognitive linguist George Lakoff (2003) develops Rosch’s ideas
in new directions, making central the idea of metaphor in building under-
standing. In Lakoff’s view, complex ideas (distinctions) are understood by
analogy from more basic ideas (distinctions). A child, for instance, first
comes to understand ideas of up and down, and warm and cold. These first
ideas are rooted in physical experience (the child has a body and experiences
physical phenomena). The child later comes to associate warmth with affec-
tion and cold with rejection (by observing the relationship between physical
warmth and closeness to a parent, for example).

Once established, a child can come to understand more complex ideas by
seeing them in terms of the more basic metaphors. For example, imagine
a child coming to understand a tumultuous friendship through the ideas of
“hot” and “cold”. For example, imagine a couple coming to understand
their relationship as a journey they are on together. The metaphoric nature
of our understanding shapes politics, Lakoff (2014) argues: candidates shape
messages and choose words with care in their attempt to create advantageous
associations in the minds of the electorate.

With these examples, we wish to show that the principles of distinction
and opposition developed with regards to the dialectic can be applied more
generally to mundane and everyday concepts.

2.7.1 A Thought Experiment

As a thought experiment, let’s imagine a new intelligent agent, such as a
human infant, or some hypothetical AI, has just come into existence. Having
been instantiated without assumptions, this agent possesses just one single,
unified concept, extending infinitely in all directions.

The agent begins to experience a constant stream of stimulus, and must
somehow learn how to navigate and act in the environment. What might
this agent do? What operations are possible?

If the agent’s entire understanding consists of a single concept, then the
first thing the agent might do it separate that concept into two concepts.
The separation might be along some dimension, such that the two resulting
concepts exist in some relation to each other. Having successfully performed
the separate operation, the agent could separate the resulting concepts again
and again, recursively ad infinitum, each time along some new dimension,
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achieving an arbitrarily refined conceptual structure.
In understanding the separate operation, we have the notion of dimen-

sion. Recalling Lakoff’s basic metaphor, an early separation could be be-
tween left and right, or up and down – basic distinctions needed to navigate
physical environments. As each separation is performed in sequence, we can
also imagine a hierarchy of separations, with earlier separations represent-
ing more fundamental distinctions, with later separations representing more
fine-grained distinctions (within the framework established by earlier sepa-
rations).

As a brief digression, it is thought-provoking to imagine this process of
recursive conceptual definition as a sort of inverse of a traditional Buddhist
or Hindu meditation practice. In a meditation practice, one attempts to
cease making distinctions in their experience. Here, we intentionally develop
a system of distinctions recursively out of undifferentiated experience.

2.8 Ordering and Pairwise Preference

If we exhibit prejudice towards numerical representation, what alterna-
tives might there be? Any candidate representation should satisfy the key
criteria that the space between objects is left undefined. Fortunately, item
ordering makes no statement about the nature of the relationship between
the items, apart from their relative relations to each other.

Nobel prize-winning economist Kenneth Arrow has done extensive work
analyzing voting systems. Throughout much of his career, he advocated
for ordinal representation of preference (Bianchi, 2014), pointing out that
relative preference is all that is naturally observed:

The only evidence of an individual’s utility function is sup-
plied by his observable behavior, specifically the choices he makes
in the course of maximizing the function. But such choices are
defined by the preference order and must therefore be the same for
all utility functions compatible with that ordering. Hence there
is no quantitative meaning of utility for an individual.

- Kenneth Arrow 1973; p104, emphasis added

However, Arrow would also show the limits of such a representation. In
his impossibility theorem, Arrow proved that no ranked-choice system could
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satisfy all of a set of voting system criteria (Arrow, 1970). In light of this,
Arrow would later amend his views and come to tolerate cardinal representa-
tions of preference, which contemplate real-valued distance between items, on
the grounds that such representations provide additional information (Ham-
lin, 2012). Indeed, certain limitations of ordinal preference representation
(such as the possibility of intransitive preference) are absent given cardinal
preference representation. However, Arrow cautioned against such systems,
observing that wide ranges made it more likely that voters would misrep-
resent their preferences: “The trouble with methods where you have three
or four classes, I think if people vote sincerely they may well be very sat-
isfactory. The problem is the incentive to misrepresent your vote may be
high.”

Interpreting Arrow’s comments through our framework of representation
and measurement, it seems as though we can interpret cardinal preferences
as capable of representing more information. We can see this is the case,
given that we can always convert cardinal preferences to ordinal, but not
vice versa.

This would seem to be a challenge for this thesis, which has been prej-
udiced against numerical representation of subjectivity. If the question was
only general expressiveness of representation, then the challenge would be
severe. Arrow’s comments on error, however, point to a deeper tension: mea-
surement error is almost certain to be higher for cardinal representations.

Returning to our formalisms, if we denote ordinal measurements with ro,
cardinal measurements with rc, and the reduction of cardinal measurements
to ordinal with gc→o, we see that:

I(Y ; rc(Y )) ≥ I(Y ; gc→o(rc(Y )))

but

I(Y ; rc(Y ))
?
= I(Y ; ro(Y ))

The latter uncertainty is due to the unknown trade off between expres-
siveness and measurement error.

We argue that pairwise preference has the advantage of being able to di-
rectly represent subjectivity: a preference (or distinction) between two con-
cepts. This property emerges from the structured and limited nature of the
pairwise preference: two items, and a preference for one over the other. This
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representation does not by itself contain a huge amount of information, but
what information is contained is an accurate reflection of the aspect of the
world being represented: subjective preference. We argue that, due to this
direct representation, pairwise preferences are robust against measurement
error; using terminology developed earlier, we can think of a pairwise prefer-
ence as having a proxy gap of near-zero. Regarding potential intransitivity of
preference, seen as a major weakness for ordinal preference representation, we
contend that such intransitivity is a feature of subjective experience, and we
and seek to develop methods for recognizing and responding to intransitivity.
In the parlance of software engineering, “it’s not a bug, its a feature”.

It is exactly for this ability of pairwise preference to directly represent
subjectivity (and the contradictions that sometimes appear) that we choose
to explore it.
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3 Mechanics

3.1 Elements

Having concluded our survey of material and philosophical history, we
are ready to develop the theory. Our goal will be to develop a representation
of subjective experience that is amenable to formal analysis.

Central to this theory will be the notion of pairwise preferences, which we
have attempted to justify as a valid, yet formal, representation of subjective
experience.

Before we can assess preference, we must establish some criterion to eval-
uate preferences against. Among the same candidate set of answers, different
questions can easily lead to different preferences. For example, ranging over
the items in your fridge, the questions “what to eat for breakfast” and “what
to eat for dinner” will (likely) lead to different preferences among the same
set of options.

We define questions with maximum generality, considering a general “ques-
tion object” Q. The representation of Q is intentionally unspecified; the
specific from of Q will affect only the interpretation of the results, not the
underlying theory.

We anticipate that Q will often be represented via a string of characters
(as in the fridge example). However, Q could be an image, a sound, an
equation, or some new object yet unimagined.

In order to ask questions, we need candidate answers. These candidate
answers are members of an answer set A. As with the question object Q,
the specific representation of the elements of A are intentionally unspecified.

In order to represent subjective experience, we need an entity capable of
subjective experience. Discussions of subjectivity inevitably involve discus-
sions of the notoriously elusive topic consciousness. While the exact nature
of consciousness is not known, researchers generally agree that conscious ex-
perience is attributed to discrete entities: as an entity I have an experience
of consciousness that is separate from the experiences of other entities.

To resolve group preferences, we need a set of such discrete entities. This
set of entities is denoted E. Unsurprisingly and in the spirit of this exposition,
we leave the specific nature of these entities intentionally unspecified. We
anticipate that these entities will often be people. Later in this work we will
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introduce potential new directions for this theory, for which we may want to
define these entities differently. Specifically, we will see how the problem of
defining entities can be understood as selecting an “access policy”, the choice
of which will shape the interpretation of the results.

Having introduced questions, answers, and entities, we are ready to intro-
duce the “preference”, conceived of as a basic unit of subjective experience.
As the name suggests, a preference represents an answer to a question. Pref-
erences have five components:

1. A question object Q.

2. An entity e ∈ E.

3. A candidate answer α ∈ A.

4. A second candidate answer β ∈ A.

5. The preference p ∈ {0, 1}, where 0 corresponds to preferring α.

It is not immediately obvious how we might operate on this representa-
tion. Recalling that preferences are only defined relative to a question Q,
we can make Q implicit. Further, for the moment let us assume that we are
interested only in the preferences of a single entity e.

Now, we see that the salient attributes of a preference are the two options
α, β, as well as the preference p. If we imagine α and β as nodes, then p can
be represented as a directed edge between the two. Specifically, we create an
edge (β, α) if p = 0 or (α, β) if p = 1 (the edge flows from loser to winner):

α β

This graphical representation is desirable, as it suggests a natural way
of aggregating preference. Imagine we have A = {a, b, c, d}, and an entity e
generates the following preferences:

a b a c

b d c b
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We can aggregate these preferences into the following preference graph S:

a b

c d

Aggregating preferences across multiple entities presents little difficulty.
If we have entity α generating the following (an ordered preference of a, b, c):

a b a c b c

And entity β generating the following (an ordered preference of a, c, b):

a b a c c b

We can assign each preference a weight of 1 and combine the edges. Par-
allel edges sum, while antiparallel edges cancel:

a b

c

1

1

1

1
1 1 →

a b

c

2

2

It is instructive to see what occurs in the instance of two entities with
opposing preferences. Say we α with preferences (a, b, c), and β with pref-
erences (c, b, a). We might say we could resolve this by selecting b, as this
seems the mutually-agreeable option.
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Is this principled? Selecting b would cause both entities to have their
second preference, a forfeiting of one item each. Selecting a or c, on the
other hand, would cause one entity to have its first preference, and the other
third — a forfeiture of two items. In a sense, this pair of opposing preferences
render all answers equal.

Observe what happens in the corresponding preference graph:

a b

c

1

1

1

1
1 1 →

a b

c

The answers are disconnected; we interpret as an absence of preference.

A note on method: we have been very intentional in our avoidance of
assigning numerical value to subjective preference. For an individual entity
(with an emphasis on the literal meaning of “individual” as non-divisible),
preference is non-numeric. Populations have magnitudes, however, and so
we can comfortably reason in terms of sums and ratios when considering
aggregations of entity preferences.

3.2 A Probabilistic View

Let us now consider some structural properties of preference graphs, and
interpret them through the lens of preference resolution. In this discussion,
we will employ the elements of probabilistic methods of Paul Erdős, 1959.

In the language of computer science, we denote graphs as G = (V,E),
with graph G consisting of some set V of vertices (or nodes) and some set
E of edges between the vertices. Edges can be directed or undirected, and
are denoted (u, v) ∈ E, with u, v ∈ V . When analyzing complexity, we use
n = |V |, the number of vertices, and m = |E|, the number of edges. We
done the number of incoming edges for node u as in(u), and the number
of outgoing edges as out(u). We refer to in(u) as the “indegree” of u, and
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out(u) as the “outdegree” of u. Since an edge may exist between any pair
of edges, we see that m ≤ n2. In our case, there are

(
n
2

)
possible pairs per

graph. Further, we see that maxu∈V in(u) = n− 1.
A vertex can be called a universal sink if it has in(u) = n − 1. In the

context of preference, a universal sink is an option that is preferred over all
others. As a first pass, we can think of the problem of resolving preference
as a problem of finding a universal sink, which can be found in O(n) time.

It might seem as the problem of preference resolution is simple: observe
preferences, and find the universal sink. Unfortunately, there is no guarantee
that a universal sink will exist.

To show this, we will extend the G(n, p) notation of Erdős to the tourna-
ment graphs of H. G. Landau, 1953. A G(n, p) graph is a random undirected
graph of n nodes, with the probability p of an edge existing between any
two nodes. In this discussion, we will repurpose this notation to describe a
different type of graph, a random tournament GT (n, p), generated as follows:

1. Create a complete graph of n nodes.

2. Remove all (u, u) edges.

3. Create a directed graph by randomly orienting the edges, with proba-
bility p that (u, v) ∈ E and probability 1− p that (v, u) ∈ E.

We will show that as n increases, the likelihood of a universal sink existing
in a random tournament decreases exponentially. Every vertex has n − 1
edges. For vertex u, to be a universal sink, all of these edges must point
towards it. If we consider a random tournament GT (n, p), then

p(uusink) =
∏

v∈(V/{u})

p((u, v) ∈ E) =
1

2n−1

Since the relationships between any pair of vertices is independent of
all other pairs, the probability of any sink is bounded by the sum of the
probabilities of the individual vertices being sinks:

p(Gusink) ≤
∑
u∈V

p(uusink) =
n

2n−1

The likelihood of a universal sink existing in a random tournament de-
creases exponentially as n increases. If a tournament has no universal sink,
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then there must exist at least one cycle in the tournament. A cycle is a
subset of vertices and edges such that there exists a “path” of edges such
that any vertex in the cycle is reachable from any other. Here is the simplest
cycle between three vertices:

a b

c

It is easy to see that this tournament has no universal sink. From the
perspective of preference, we interpret a cycle as a set of items which are
preferred equally; alternatively, we can say that they are indistinguishable
from each other.

If there are n vertices, then there are
(
n
2

)
pairs. Since there are two

possible states for each pair, there are a total of 2(n
2) possible graphs. As an

illustration, let’s consider a triple, where n = 3.For every triple of vertices,
there are 23 = 8 possible permutations of edges:

a b

c

a b

c

a b

c
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a b

c

a b

c

a b

c

a b

c

a b

c

In the case of three vertices, we see cycles in two out of eight possible
graphs. It is worth noting that while the absence of cycles in a random
tournament necessarily implies the presence of a universal sink, the presence
of a cycle does not necessarily imply the absence of a universal sink. To see
this, consider the following four-vertex directed graph:

a b

c d

In this graph, vertices {c, b, d} form a cycle, but a is still a universal sink.
As discussed earlier, however, the likelihood of a universal sink existing in a
random tournament, even allowing for cycles, decreases exponentially in n.

We raise this point to underscore that the presence of cycles does not
imply the absence of meaningful structure; simply that meaningful structure
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will be more challenging to discern. What is “structure?” American mathe-
matician Claude Shannon defined a measure of structure, known as entropy,
which applied to probability distributions of random variables (Cover and
Thomas, 2006):

H(X) = −E[logp(X)] = −
∑
x∈X

p(x)logp(x)

Entropy is high when a distribution has a lot of uncertainty, and low
when a distribution has little uncertainty.

This metric has proven invaluable: what analogous metrics might we de-
velop for tournaments? One possibility is the maximum indegree, maxu∈V in(u).
This metric can be calculated in O(m+n) (linear time), and provides a rough
sense of the amount of structure of the graph.

A second possibility is to look at the tournament entropy HT , the entropy
of the empirical distribution of the indegrees of tournament G:

HT (G) = −
∑
u∈V

in(u)

m
log

(
in(u)

m

)
In the case of a three-node cycle, each node has an indegree of 1, equiva-

lent to a uniform distribution over indegrees:

a b

c

→

a b c

0.9

1

1.1

1.2

in
d

eg
re

e

The tournament entropy of this graph is 1.585 bits, the maximum entropy
distribution for three items. In the case of a three-node transitive preference,
we see a skewed distribution:
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a b

c

→

a b c

0

0.5

1

1.5

2

in
d

eg
re

e

In this case, the tournament entropy is lower, only 0.918 bits.

We note that tournament entropy can be calculated in linear time. Fur-
ther, while this section has considered tournaments in which m =

(
n
2

)
and

every pair {u, v} appears once, we can evaluate the tournament entropy of
preference graphs with m <

(
n
2

)
(graphs with partial observations), as well as

thoughts with m >
(
n
2

)
(graphs aggregating preferences of multiple entities).

When evaluating tournament entropy for preference graphs with large m,
additional care must be taken as the distribution of observations across the
pairs may not be uniform.

3.3 A Linear Algebra View

A graph can be represented as a matrix, with the values of the matrix
corresponding to the values of the edges between nodes. Let us denote the
raw connection matrix as C. By setting the values of the diagonal equal to
the sum of their corresponding columns (Cii =

∑
j Cji), and normalizing the

rows of this matrix (
∑

iCji = 1), we can construct a Markovian “transition
matrix”, denoted M :

a b

c

C =

0 0 0
1 0 0
1 1 0

 M =

1 0 0
.5 .5 0
.5 .5 0
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This matrix M encodes the probability of “transitioning” from one item
to another, with the values on the diagonal representing the likelihood of
“sticking with” an item. If we imagine a vector xt ∈ 4V−1 representing the
state at time t as a distribution over all possible items, then

xt+1 = xTt M

gives us the distribution over items at time t + 1. If M has certain
properties (irreducible, meaning that any item can be eventually reached
from any other item, and aperiodic, meaning that there are no stable loops
among sets of states), then it can be shown that eventually x will converge to
a “steady state” distribution, in which x = xTM (H. W. Lin and Tegmark,
2016). Further, it can be shown that this steady state distribution, denoted
x∞, is equivalent to the principal eigenvector of the matrix M , here denoted
v1. The normalization of M ensures that the principal eigenvector, denoted
λ1, is always equal to 1.

Interpreting x∞ as a distribution over items, then the components of x∞
with the largest values (probability) can be seen as the “most preferred”
items. The Perron-Frobenius theorem forms the foundation of these results,
and use of this method has a long history (Keener, 1993) and many applica-
tions, including the ranking of sports teams (E. Landau, 1915) and websites
(Brin and Page, 1998).

It is worth discussing some interesting attributes of the principal eigenvec-
tor v1. First, by definition, ||v1||1 (the L1 norm) is equal to 1. However, ||v1||2
(the L2 norm), varies. Further, for v1 with dimension n, min(||v1||22) = n/n2,
corresponding to a uniform preference over all items, and max(||v1||2) = 1,
corresponding to a clear single preference.

Proof. As ||x||22 ,
∑
x2i , it will suffice to show that for any α ∈ R, ε > 0,

(α + ε)2 + (α− ε)2 > 2α2.

This is easily shown:

α2 + 2αε+ ε2 + α2 − 2αε+ ε2 > 2α2

2α2 + 2ε2 > 2α2
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2ε2 > 0

This result suggests that ||v1||2 can serve as an alternative measure of
preference structure, with larger values implying more structured preference.
Further, for multiple entities, comparisons of entity-specific v1 may be in-
terpretable as comparisons of preference (entities with smaller distances be-
tween v1 have more similar preferences, etc). Unlike tournament entropy,
this measure incorporate global information about the preference graph (as
v1 incorporates global information); however, this measure cannot be cal-
culated in linear time. More work remains to be done understanding the
specific behavior of v1 and possible applications as a measure of preference
structure beyond the standard application as a ranking.

With these concepts in hand, we can now ask what these steady states
might look like for a series of simple preference graphs (Figures 3 - 11). This
series of basic examples illustrate how the language of graphs and matrices
allows us to make meaningful statements about preference in the presence
of challenging structures like cycles, which manifest as contradictions when
represented in terms of linear ordering.

a b M =

[
1 0
1 0

]
x

y

v1

Figure 3: Preference graph G, transition matrix M , and principal eigenvector
v1 for a two-node transitive preference. ||v1||22 = 1, HT (G) = 0. Steady state
achieved after one iteration.
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a b M =

[
.5 .5
.5 .5

]
x

y

v1

Figure 4: Preference graph G, transition matrix M , and principal eigenvector
v1 for a two-node cycle. ||v1||22 = 1/2, HT (G) = 1. Intuitively, we set the
probability of each item equal to the average of the prior preferences. The
normalizing restriction on v ensures that these averages continue to represent
a distribution over the items. Note also that the steady state (a uniform
distribution) is achieved after only one iteration.

a b

c

M =

1 0 0
.5 .5 0
.5 .5 0


x

z

y

v1

Figure 5: Preference graph G, transition matrix M , and principal eigenvector
v1 for a three-node transitive preference. ||v1||22 = 1, HT (G) = 0.918. In this
case, the steady state is achieved in the limit. At every iteration, C sends its
probability mass to A and B evenly, and has no mass after the first iteration.
B splits its mass between itself and A, while A directs all of its mass towards
itself. The limiting convergence is due to the logarithmic reallocation of mass
from B to A (a bit of a Zeno-style paradox).
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a b

c

M =

.5 0 .5
.5 .5 0
0 .5 .5


x

z

y

v1

Figure 6: Preference graph G, transition matrix M , and principal eigenvector
v1 for a three-node cycle. ||v1||22 = 1/3, HT (G) = 1.585. Here the reallocation
of probability mass across iterations exhibits more complex dynamics, and
converges to v1 in the limit.

a b

c

M =

 .5 .25 .25
.25 .5 .25
.25 .25 .5


x

z

y

v1

Figure 7: Preference graph G, transition matrix M , and principal eigenvector
v1 for a three-node double cycle. ||v1||22 = 1/3, HT (G) = 1.585

a b

c

1

1
3 M =

.75 .25 0
0 .5 .5
.75 0 .25


x

z

y

v1

Figure 8: Preference graph G, transition matrix M , and principal eigenvector
v1 for a three-node cycle with edge weights. ||v1||22 = 0.4049, HT (G) =
1.371. Note how the introduction of variable weights repositions v1 within
the simplex, allowing us to recover a transitive ordering a > b > c.
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a b

c d

M =


.66 0 .33 0
.33 .66 0 0
0 .33 .33 .33
.33 .33 0 .33

 (.4, .3, .2, .1)

Figure 9: Preference graph G, transition matrix M , and principal eigenvector
v1 for a four-node graph with two cycles. ||v1||22 = 0.3, HT (G) = 1.918.

a b

c d

M =


.66 0 .33 0
.33 .66 0 0
0 .33 .66 0
.33 .33 .33 0

 (.33, .33, .33, 0)

Figure 10: Preference graph G, transition matrix M , and principal eigenvec-
tor v1 for a four-node graph with one cycle. ||v1||22 = 1/3, HT (G) = 1.585.
Note that we see a cycle in v1, despite having a larger L2 value than the
previous example.

a b

c d

M =


1 0 0 0
.33 .33 .33 0
.33 0 .33 .33
.33 .33 0 .33

 (1, 0, 0, 0)

Figure 11: Preference graph G, transition matrix M , and principal eigenvec-
tor v1 for a four-node graph with one cycle. ||v1||22 = 1, HT (G) = 1.793. Note
how the presence of a cycle in the lower nodes does not prevent the graph
from having high level of structure.
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3.4 Connections to Social Choice Theory

Those readers familiar with the economics literature will see many par-
allels to the Social Choice Theory presented in Arrow, 1970. In this work,
Arrow proposed three criteria for good voting systems, and went on to fa-
mously prove that no voting system could exist which satisfied all three.
These criteria are:

• Unanimity: if all voters prefer a to b, the group prefers a to b.

• Non-dictatorship: there is no individual voter whose preferences al-
ways prevail.

• Independent of Irrelevant Alternatives (IIA): the group prefer-
ence between a and b should be determined only by individual prefer-
ences between a and b (and not, for example, c).

Arrows impossibility theorem shows that these three criteria taken to-
gether can lead to contradiction. We will give a sketch of the proof here
(inspired by Geanakoplos, 2005), as well as reinterpret the contradiction
through the framework of preference graphs.

First, imagine we have a set V of N voters, asked to each submit a linear
ordering of three items: a, b, and c. The voters are partitioned into three sets
as follows: S1 = {V1, ..., Vk−1}, K = {Vk}, and S2 = {vk+1, ..., VN}, and all
voters in each set always vote the same way. Set K consists of one voter, Vk,
who we will refer to as the “pivotal voter” in that if Vk votes the same way
as either S1 or S2, then that preference prevails for the group. In Figure 12,
we see a sequence of three states of preference. A contradiction emerges in
the third state, when the preference reversals of S1 and S2 have no impact
on the group preference.

In Figure 13, we see the same sequence of preferences represented graph-
ically. In this view, we see that the “paradox” is simply the inability to
represent cyclical preference as a linear ordering. We also see how the IIA
assumption becomes problematic, as the ordering of b > a and a > c inhibits
the group ordering of c > b. If we relax the IIA assumption and allow cycles,
we see that the final preference graph of this proof has the same structure as
our example graph in Figure 8, and therefore has a steady state distribution
of c > a > b. Note that the eigenvector-based methods described earlier
imply IIA relaxation.
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S1 K S2 Group
b a a a
c b b b
a c c c

→

S1 K S2 Group
b b a b
c a b a
a c c c

→

S1 K S2 Group
c b a b
b a c a
a c b c

Figure 12: Sequence of preference orderings for voter subsets S1, K, and S2,
and final group preference. Vk is a dictator in that the group prefers b > c
even though both S1 and S2 prefer c > b.

a b

c

1

1
5

a b

c

1

1
5

a b

c

1

1
3

Figure 13: Same sequence of preference orderings, shown as preference
graphs. We set |S1| = |S2| = 2. S1 and S2’s reversal of preference between b
and c in the third graph creates a cycle.

Here we see how the language of preference graphs clarifies the dynamics
involved in social choice.
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4 Applications

Ultimately, our goal is to make statements about the global relationships
which exist in the graph, using information which comes to us via local rela-
tionships between nodes. Arrow’s IIA criteria requires the consideration of
local relationships only, but as we have seen, this criteria is problematic in
the presence of cyclic preference structure.

The graphical approach taken here relaxes this criterion and considers
all items and preferences collectively. However, accounting for global re-
lationships between nodes (relationships involving three or more nodes) is
computationally challenging due to the rapid increase in the number of sub-
sets to consider. For example, a graph of ten items has 45 pairs, 120 triples,
and 210 sets of four. Fully accounting for all possible interactions among
items is currently computationally prohibitive for large graphs; as a result,
techniques for approximately learning preference structure, or for pruning or
otherwise constraining the number of items, will become valuable.

4.1 Linear-Time Methods

If a graph is not fully connected (some vertices lack edges), then it is pos-
sible for there to exist multiple sinks. If a graph is fully connected, however,
then there can exist at most one sink. 6

The first example we will consider is the most fundamental of preference
resolution systems: the plurality voting system. In this system, entities
(which we will call voters) are allowed to vote for one of n candidates, and
the candidate with the most votes win.

To set up this system in the language of preference graphs, we will define
the following: Our access policy is that every voter is allowed to cast one
vote in the election. Each vote will be translated into n−1 preferences, with
an edge pointing to the chosen candidate from every other candidate. For
example, given three candidates {a, b, c}, a vote for a would translate into
the following:

a b

a c

6Proof : if there are two sinks, one must point towards the other: contradiction →←.
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We aggregate the preferences using the additive rule described above. The
winner of the election will be the sink of the resulting graph. The absence
of cycles is guaranteed by the structure of the access policy. Consider the
following result: a receives 10 votes, b receives 7, and c receives 3. We
combine these into the following graph:

a b

c

10

7

7

3
10 3 →

a b

c

3

7
4

We run the sink-finding algorithm and return a, the winner. It is worth
nothing how the complexity of this preference-resolution scheme is O(n), the
same as the complexity of simply taking the maximum of vote counts for n
candidates.

What happens in the case of a tie? Let’s say b receives 10 votes:

a b

c

10

10

10

3
10 3 →

a b

c

7
7

In this case, we will observe two sinks in the resulting graph, representing
two possible winners. This corresponds nicely with our intuition of what
should happen in this case.

Earlier, we showed how the preference resolution problem can be as simple
as finding a sink in a directed graph, an O(n) operation. Without a guarantee
of acyclicity, however, we must turn to alternative methods. Intuitively, we
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would like to say that a node which has a lot of incoming edges is preferred,
even if that node possesses some number of outgoing edges.

The simplest approach in this vein would be rank items by the value
of their incoming edges, with the winner being the item which satisfies
argmaxv∈V [in(v)]. If the preferences are input as ordered rankings, this
method is equivalent to the Borda count election system, a method used
in practice by governments today (Reilly, 2002).

A slight variation on this approach would be to take the difference of
incoming and outgoing edges, and return the node with the largest differ-
ence. If preferences are input as ordered rankings of all items, this method
is equivalent to the method of ranking only the incoming edges.7 If there is
a different access policy, this method may return different results.

These algorithms, which both run in O(m+n) (linear) time, utilize local
(pairwise) information between nodes, but incorporate no information about
global relationships among nodes. Given highly structured access policies
which constrain the resulting preference graph, these methods are satisfac-
tory. Given less constrained access policies (in which pairwise preferences
are observed at random), these methods will become less reliable, and global
methods which incorporate all observed preferences will become necessary.
As we will see, however, algorithms which incorporate global information will
take much more than linear time to run.

4.2 PrefRank

Google’s first PageRank algorithm, designed by founders Sergey Brin and
Larry Page, was designed to solve a problem very similar to that of preference
resolution: given a directed graph of websites, can one determine which sites
are most relevant for a given query? Brin and Page’s solution was to model
the web as a random directed graph, and to imagine a “random surfer” who
would randomly click on links (represented as directed edges from one site
to the next). As this surfer traversed the web, she would be more likely to
arrive at pages which had more inbound links; these pages were preferred.

Links from preferred pages are worth more than links from peripheral
pages, as the popularity of the preferred page meant it was more likely that

7For any pair, the sum of incoming and outgoing edges is always equal to the number
of votes, therefore argmaxv∈V [in(v)− out(v)] = argmaxv∈V [in(v)])
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a surfer would be travel elsewhere via that page. The PageRank algorithm is
nearly identical to the eigenvector-finding techniques discussed above. The
key difference is that PageRank does not include self-edges equal to the
indegree of the node, except in the case where the outdegree of a node is
0 (in order to keep the adjacency matrix full-rank).

The principle difference between the web graph of Brin and Page and
the preference graphs we consider here is the variable value associated with
the edges. On the web, a link is a link; there is no notion of a link being
worth “more” or “less”, apart from the page the link originated from. In our
case, edges have weight independent of the popularity of their corresponding
nodes. We can naturally interpret this weight as the strength of the relative
preference, and so should seek to allocate preference mass according to the
strength of these preferences.

This introduces a complication, however, since the lack of self-edge makes
it impossible to consider the popularity of a node when distributing mass
away from itself. By restoring self-edges to the model, we avoid this problem.

We present PrefRank, a extension of PageRank for preference graphs.
PrefRank simply finds the principal eigenvector v1 of a transition matrix M ,
with the results interpreted as a distribution of probabilities v1 ∈ 4V−1.

An eigenvector-based algorithm, our implementation of PrefRank finds v1
using the power method. Each iteration of the power method runs in O(n2)
time, and many iterations may be needed before convergence. As such, this
method is significantly slower than the linear-time methods given above.

4.2.1 Empirical Results

We evaluate PrefRank on simulated data as follows.
For V items and preference strength B:

• for n ∈ {1, ..., N}:

– Draw pn, qn randomly from V .

– Draw 1[pn < qn] ∼ Bernoulli(B)

We assess quality of ordering with Spearman’s footrule (as discussed in
Wauthier, Jordan, and Jojic, 2013), a sum of the per-item position displace-
ments between true ranking and recovered ranking (Figure 14).
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Figure 14: Spearman footrule as a function of number of random observations
N and a transitive ordering, varying preference strengths B.

Figure 15: Number of iterations to convergence (given a full set of non-
random observations and a transitive ordering) as a function of number of
items |V |. Initial vector is uniform. The left-hand graph suggests that a
larger n requires a lower convergence threshold, as the values will necessarily
be smaller.

We conclude that PrefRank is able to recover a large amount of preference
structure. The quality of the structure recovered increases as the number of
pairwise observations increases. Further, the stronger the underlying prefer-
ence (B), the less data was needed to improve accuracy. These results are
unsurprising but bode well. More work remains to determine under what cir-
cumstances and for what specific types of preference does PrefRank perform
better.
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4.3 Prototype

The complexity of the algorithms discussed above are all, in some form,
O(f(n)). Finding some way of reducing n would allow all of these techniques
to be applied more quickly.

One way to reduce n would be to identify elements of V which are closely
related, and to collapse them into more general “categories” or “prototypes,”
which can be treated as though they were single nodes in a graph. Rosch
(1973) provides theoretical justification for this approach, arguing that hu-
man cognition utilizes abstract “prototypes” in order to reason heuristically
about the world. Identifying these prototypes is conceptually similar to iden-
tifying other types of graphical structures, such as communities in social
networks.

Community-finding is a major problem in computer science, and much
work has been done on this problem. We present Prototype, an extension
of the Mixed-Membership Stochastic Blockmodel (MMSB) of Airoldi et al.,
2008 designed to identify such prototypes among a large set of items.

This is a “Bayesian model” in that we first assert a model for our data, in
which latent factors (hidden variables) interact and ultimately bring about
the data we observe. Inference in this model amounts to learning the optimal
(“posterior”) values of these hidden variables, based on the data.

4.3.1 Model Specification

In this model, we assume each item is perceived as a mixture of one or
more abstract “prototypes”. We then assume there is a fixed “interaction
matrix” B, governing preferences between prototypes, where Bgh indicates
that probability that an item of prototype h is preferred over an item of
prototype g.

The generative process is as follows:

• For items p ∈ V :

– Draw a K-dimensional membership vector πp ∼ Dirichlet(α).

• For each observation xn = (pn, qn, yn) ∈ X:

– Draw item type zpn→qn ∼Multinomial(πpn)
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– Draw item type zqn→pn ∼Multinomial(πqn)

– Draw yn ∼ Bernoulli(zTpn→qnBzqn→pn)

Prototype extends the work of Airoldi et al. (2008) by imposing symmetric
structure on the matrix B. Specifically, we enforce that Bgh = 1−Bhg ∀g, h
(note that this implies Bgg = 0.5 ∀g). Unlike other mixed-membership
stochastic blockmodels, which emphasize intra-community connective pat-
terns, our model exclusively considers inter-community connective patterns.

This model does not attempt to learn distinct preferences per entity.
This was intentional, as this model is attempting to capture and represent
preference in aggregate. That said, this work could be extended by learning
a different interaction matrix B per user. We leave this for future work.

4.3.2 Inference

Our goal is to learn posterior values for πp, zpn→qn , zqn→pn , andB. πp, zpn→qn ,
and zqn→pn are random variables, and we will learn posterior values via mean-
field variational inference (Wainwright and Jordan, 2008, Blei, Kucukelbir,
and McAuliffe, 2016). B is a matrix of parameters, and so we learn posterior
values via variational Expectation-Maximization.

We first assume the following posterior “q” distributions:

• q(πp) ∼ Dirichlet(γp)

• q(zpn→qn) ∼Multinomial(φpn→qn)

• q(zqn→pn) ∼Multinomial(φqn→pn)

The essence of variational inference (specifically coordinate-ascent VI) is
that we can learn the optimal distribution of each variable given the other
variables. We iterate over the variables, updating their distributions in turn,
with each iteration bringing the q distributions closer to the true posterior.

The update equations are as follows:

ˆγp,k = α +
∑
n∈N

1(p = pn)φpn→qn,k +
∑
n∈N

1(p = qn)φqn→pn,k

ˆφpn→qn,g ∝ exp

{
Eq

[
log(πp,g)

]
+
∑
h

φqn→pn,hEq

[
logp(yn|Bgh)

]}
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ˆφqn→pn,h ∝ exp

{
Eq

[
log(πq,h)

]
+
∑
g

φpn→qn,gEq

[
logp(yn|Bgh)

]}

B̂gh =

∑
n∈N φpn→qn,gφqn→pn,hyn + φpn→qn,hφqn→pn,g(1− yn)∑

n∈N φpn→qn,gφqn→pn,h + φpn→qn,hφqn→pn,g

Additional details of these derivations are given in Appendix 6.1. Every
iteration of the CAVI algorithm has complexity O(NK2 +V K), again much
slower than the linear-time methods.

4.3.3 Empirical Results

We evaluated Prototype in three ways: on simulated data, on film review
data, and on survey data. Additional information on these data sources can
be found in Appendix 6.3.

Simulations

In order to validate our implementation and the validity of the model, we
fit our MMSB to simulated data. For small-to-medium sized graphs, our im-
plementation recovers (with some variation) the true prototype distributions
π and interaction matrix B, given enough observations. See Figures 16 and
17.

MovieLens Data

Given that the MovieLens dataset we work with is constructed based
on the user ratings, the preferences we observe for a single user must be
transitive. As such, for a single user, we expect to be able to learn five
“prototypes”, each corresponding to a different rating, with the interaction
matrix B to encoding a transitive ordering among these ratings. We find
that this occurs: when setting K = 5, the model learns a strict ordering
among the prototypes, and is able to correctly predict this user preferences
with 98% accuracy on the heldout dataset (Figure 18).

With multiple users, we are no longer guaranteed a single shared transitive
ordering. We see in Figure 19 that the heldout accuracy of the MMSB
plateaus at around 76% when trained on the data from 30 users. Adding
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more prototypes, beyond K = 4, does not improve the performance of the
model. This suggests that the model is simply assigning each movie to the
prototype corresponding to its average rating (and further that there are
relatively few movies rated a 1); thus, having more than 4 or 5 prototypes is
not useful.

Survey Data

We fit Prototype to a survey of beer preferences, first considering only the
answers from the single opinionated user. We fit the model to 900 training
observations, and measured predictive accuracy on the remaining 344. We
varied K, the number of prototypes, from 1 to 15, but found that predictive
accuracy was very stable for K > 1, hovering around 78%. With K = 3,
our model learned a transitive ordering of preferences among prototypes. See
Figure 20.

We next considered the answers coming from all other participants. We
fit the model to 150 training observations and measured accuracy on the
remaining 74. We varied K in the same way as before, and observed both
more variable and overall weaker predictive accuracy, rarely surpassing 60%.
We conclude that this model is capable of capturing prototype interaction
structure, but it will not perform well given small samples, weakly structured,
or very noisy data.
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Figure 16: True (top) vs. recovered (bottom) prototype assignments, K=4,
V=10, N=10000. We see how the model has correctly grouped the items into
their prototypes. Note the label-switching — this illustrates the multi-modal
nature of the joint probability distribution.
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Figure 17: Simulated interaction matrix, items sorted by most likely proto-
type, K=4, V=100 for all models. Top to bottom: N=1000, 2500. Left to
right: B = .95, .8. The visible blocks show that items coming from similar
prototypes interact in similar ways to items coming from other prototypes.
The diagonal is gray, indicating that intra-prototype comparisons are 50/50
chance.

57



Figure 18: Movie interaction matrix, one user, items sorted by most likely
prototype, K=5, V=272, N=1499

Figure 19: Predictive accuracy against held-out data, 200 films and 20 users,
function of number of prototypes K. Accuracy plateaus at K = 4, suggesting
that the model is assigning each movie to a prototype corresponding to an
average rating.
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0 1 2
0 0.50 0.10 0.11
1 0.90 0.50 0.89
2 0.89 0.11 0.50

Figure 20: Interaction matrix (left) and B matrix (right) for beer preferences,
one user, items sorted by most likely prototype, K=3, V=27, N=1244. We
see a transitive ordering of the three prototypes (1 < 2 < 0). It is unclear,
however, how the items comprising the prototypes should be interpreted.
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5 Future Directions

5.1 Deployment to a BBVM Environment

The aim of this work has been to develop methods of representing and
analyzing preferences, to facilitate the large-scale coordination of individuals.
In particular, emphasis was placed on understanding the efficiency of anal-
ysis. Efficient analysis would allow for the wider deployment of preference-
resolution mechanisms, and their inclusion in a wider range of applications.

In particular, we believe there is opportunity to embed efficient preference-
resolution mechanisms into applications deployed to blockchain-based virtual
machines, such as Ethereum. These platforms have the following consequen-
tial properties:

• The platform is turing-complete, allowing for the performance of com-
putations of arbitrary complexity.

• Computations carried out on the platform are redundant and immutable,
making results very difficult to fabricate, and therefore highly legiti-
mate.

• The platform is distributed, so the system can survive the loss of indi-
vidual nodes.

One could imagine applications which continuously measure and analyze
preference, and take autonomous action upon discovering sufficiently clear
preference structure. In general, the fragility of computer systems (suscep-
tibility to hacking, for example), would likely make us reticent to devolve
too much decision-making autonomy to these systems. The resiliency and
legitimacy of the BBVM platform, however, make these types of applications
more feasible.

The large-scaled redundancy of computation on these platforms (all com-
putations must be carried out by all nodes) means that any analysis run
on these platforms will needs be of limited complexity. This is a major
constraint, and motivates the search for more efficient representations and
analysis. It is illustrative that the primary application of these technologies
to date has been the creation of “cryptocurrencies”. The implementation
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of cryptocurrencies are computationally simple, requiring little more than
constant-time (O(1)) arithmetic operations on floating-point numbers.

The promise here is great, however: were sufficiently efficient represen-
tations and analysis discovered, it would be possible to deploy applications
which autonomously and legitimately coordinate activity in a highly non-
hierarchical way, without appealing to individual (and therefore susceptible
to coercion or exploitation) leadership. The computational power of these
platforms is currently limited, but if the history of computing is any indica-
tion (in 1977 the Apple II had RAM measured in kilobytes), they will grow
in power over time. As such, methods of analysis too cumbersome to deploy
today may find themselves surprisingly valuable in the years to come.

5.2 Specialized Access Policies

In our initial specification of preference graphs mechanics, we discussed
the notion of an “access policy” governing the creation of preferences. The
simplest access policy would allow any entity to create any preference between
any pair of items at any time. This policy is highly open, but provides
few safeguards against manipulation of the preference graph. Innovations
in access policies have the potential to limit the extent to which preference
graphs can be manipulated.

One idea would be to incorporate a material cost to preference creation,
disincentivizing entities from creating frivolous preferences. A related idea
would be to tie access to some sort of secondary criteria, such as the ownership
of shares in a venture. In online environments, tying access to material
conditions will likely be important in avoiding Sybil attacks (Danezis and
Schiffner, 2006).

Returning to the earlier discussion of the role of price as a low-dimensional
representation of economic information, we note that prices are set via an
energy-intensive bargaining process, in which participants are well-incentivized
to arrive at optimal prices. Inversely, it is easy to see how prices set at ran-
dom would be of much less value; our historical experience with stock market
irrationality strongly suggests that this is the case (Minsky, 2008). Conse-
quently, we seem justified in concluding that the value of preference data will
be tightly linked to the incentive structure accompanying their generation.
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5.3 Item Pruning and Active Learning

As discussed earlier, given n items there are
(
n
2

)
possible pairs. An at-

tractive property of preference graphs is that the item set V is dynamic, and
new items can be created in real-time (Salganik and Levy, 2015). A larger
number of items, however, makes it more difficult to observe a sufficient
number of preferences to accurately recover global preference structure. As
such, techniques for either 1) reducing the number of items to be considered,
or 2) identifying and observing critical pairs, would help make preference
resolution easier for a large number of items.

5.3.1 Item Pruning

We have already proposed one method for item pruning, the MMSB al-
gorithm. This algorithm takes in an arbitrary number of observations and
learns K << n prototypes which reflect a higher-level preference structure.
Possession of these prototypes and their relationships reduces the size of the
problem in the following ways:

• If there are clear prototypes but complex preferences between proto-
types, we can rephrase the question only in terms of the prototypes,
easing the problem from complexity in n to complexity in K (“zooming
out”).

• If there are clear preferences between prototypes, such that one proto-
type is universally preferred, then we can limit consideration only to
the items associated with the winning prototype (“zooming in”).

This is only one example. More techniques for item pruning would allow
for the more efficient analysis of complex preference structure.

5.3.2 Active Learning

As said, n items creates n(n− 1)/2 possible pairs. In this work, we have
assumed that preferences will be observed at random, but in practice it is
unlikely that all pairs will be of equal importance in discovering preference
structure. For example, if two items seems to be in general preferred over all
other items, then we should prioritize learning the relative preference between
those two items. This prioritization is known as “active learning” and there
exists a large literature on the topic (Shahriari et al., 2016).
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5.4 Optimal Committee Discovery

Throughout this work, we have implicitly assumed that larger numbers of
entities leads to better, more legitimate decisions. While this assumption is
defensible when considering questions of an abstract or ethical nature (“what
is our greatest value”, or “how should we balance the budget”), this assump-
tion is less defensible when considering technical questions (“how can we
improve our energy infrastructure”, or “which subcontractors should we hire
to for this construction project”). For questions requiring technical expertise,
large numbers of non-specialized entities would have noisy and high-entropy
(uninformative) preference structure. It would seem that instead of including
the largest number of entities, we should instead seek to assemble a subset
of entities (a “committee”) with the following three properties:

1. All entities possess sufficient expertise to be able to make meaningful
distinctions between items (nonrandom preference structure).

2. The variation in preference among these entities adequately covers the
variation in preference found in the larger community.

3. The committee is small enough that meaningful social relations can be
developed between the members (Dunbar, 1992).

We would expect preferences drawn from a committee with these proper-
ties would be more structured than preferences drawn from the larger commu-
nity, and therefore easier to analyze and yielding more legitimate conclusions.

The question becomes that of discovering these committees. One ap-
proach would be to pose a question to all entities, and then consider only
the subset of those entities whose preferences meet some criteria for minimal
structure (such as having a low tournament entropy or high ||v1||2). Another
approach would be to pose a general question to all entities, and then select
those entities whose preferences for the general question meet some crite-
ria, and then put to them the new, more specific question. Grouping could
be done using the per-entity v1, using a clustering algorithm like K-Nearest
Neighbors, or by looking at cosine similarity.

5.5 Question Assessment

The notion of “structure” of preference makes it possible to empirically
measure the “quality” of a question, with high-quality questions giving rise
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to highly structured preferences. In an extreme case, a question consisting
of nonsense letters would be expected to lead to completely unstructured an-
swers: entities either abstaining or indicating preferences at random. Such a
question would be low-quality in that it does not give rise to structured pref-
erences. Following this reasoning, higher-quality questions are those which
give rise to more well-structured preferences (however “structure” is defined
in the context of the particular problem).

If we had two candidate questions Q1, Q2, and the same set of candidate
answers, we could identify objectively the “better” question by seeing which
question gave rise to more structured preferences. It is interesting and en-
couraging to observe how the mechanics of preference graphs given in this
work allow us to learn not only the relations between items, but the relations
between questions.

5.6 Preference Databases

The simple and consistent representation of the pairwise preference lends
itself well to the development of large, longitudinal preference databases.
One could imagine a general question (“what do you look for most in a
partner”) being posed for an extended period of time, with answers being
generated by many entities. Assuming that each preference is accompanied
by appropriate metadata, these preference databases would become a rich
and versatile source of data, comparable to standard surveys such as the
General Social Survey.

5.7 Conclusions

The German-American political theorist Hannah Arendt has written about
the need for a “public sphere”, in which there exist methods and structures to
allow the achievement of collective freedom via the construction of a common
world (d’Entreves, 2016). In Arendt’s view, the public sphere is artificial in
that does not require grounding in notions of “natural rights”, but is rather
constructed and maintained somewhat arbitrarily by human beings. Fur-
ther, Arendt felt that political representation (via elected officials) limited
the power of individuals and emphasized the distinction between the rulers
and the ruled. In the spirit of Arendt, we have attempted to lay groundwork
for new mechanisms of direct political participation.

64



This work has explored the question of large-scale nonviolent coordina-
tion, taking as its starting point new powerful communication and compu-
tational technologies. We found ourselves closely tracking the work of the
social choice theorists, and incorporated ideas from machine learning to at-
tempt to understand and solve those same problems. We presented a general
representation of preference, achieving the goal of formalizing subjectivity.
We then presented a number of algorithms, old and new, for analyzing these
types of representations.

One might question the prudence of this line of research. We appeal to
our earlier assertion regarding computing technologies, as well as Arendt’s
notion of the constructed nature of the public sphere, to conclude that it is
fully within our power to discover new ways of living and working together.
In a world stinging from the bitterness of inequality and rapidly losing faith
in existing institutions of governance, this line of thinking has never been
needed more.
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6 Appendices

6.1 Prototype Derivation

6.1.1 Joint probability and ELBO

Here is the joint probability for this model:

p(Y, π1:P , Zp→q, Zq→p|B,α) =∏N
n=1 p(yn|zpn→qn , zqn→pn , B)p(zpn→qn|πpn)p(zqn→pn|πqn)

∏V
p=1 p(πp|α)

Inference will involve learning posterior values for π1:P , Zp→q, Zq→p, B.
We will learn π1:P , Zp→q, Zq→p through variational inference, and B through
variational expectation-maximization (as it is not a random variable).

We introduce the following q distributions for the latent variables:

q(πp) ∼ Dirichlet(γp)

q(zpn→qn) ∼ Multinomial(φpn→qn)

q(zqn→pn) ∼ Multinomial(φqn→pn)

Note that the matrix Γ will be V ×K, while matrices Φp→q and Φq→p are
N ×K. We will learn all parameters by maximizing the ELBO:

ELBO (Γ,Φp→q,Φq→p;Y, π1:P , Zp→q, Zq→p, B, α) =

Eq

[ N∑
n=1

(
log p(yn|zpn→qn , zqn→pn , B) + log p(zpn→qn|πpn) + log p(zqn→pn|πqn)

)

+
V∑

p=1

log p(πp|α)

]

− Eq

[ N∑
n=1

(
log q(zpn→qn|φpn→qn) + log q(zqn→pn|φqn→pn)

)
+

V∑
p=1

log q(πp|γp)
]

The updates for γ, φp→q, φq→p are exactly as given in Airoldi et al., 2008,
with the modification that we iterate over N observations, rather than V ×V
pairs.
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6.1.2 Learning the B Matrix

Our model differs from the MMSB specified by Airoldi et al., 2008 , in
that we introduce restrictions on the matrix B. The first thing to note is
that the symmetric restriction on B implies that we must learn and store
only the upper-triangle of the matrix; the lower-triangle can be generated
from the upper. We formalize this symmetry with the following likelihood
distribution on yn (with g referring to the index corresponding to the one-hot
vector zpn→qn , and h corresponding to the same for zqn→pn):

p(yn|zpn→qn = g, zqn→pn = h,B)

= p(yn|Bgh)1[g<h]p(yn|1−Bhg)
1[g≥h]

=

(
Byn

gh(1−Bgh)(1−yn)
)
1[g<h](

(1−Bhg)
ynB

(1−yn)
hg

)
1[g≥h]

Values of B are learned through variational EM, in which we set the values
using maximum-likelihood, using the values of the variational parameters
learned during CAVI. To derive the update for B, we take the gradient of
the ELBO with respect to B, set it to 0, and solve. Note that we only need to
consider the terms in the ELBO with depend on B; we hide all other terms
in the constant C. Additionally, we let gn = zpn→qn , and hn = zqn→pn :
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ELBO(B) = C + Eq

[ N∑
n=1

log p(yn|zpn→qn , zqn→pn , B)

]

= C + Eq

[ N∑
n=1

1[gn < hn]

(
yn log(Bgnhn) + (1− yn) log(1−Bgnhn)

)
+1[gn ≥ hn]

(
yn log(1−Bhngn) + (1− yn) log(Bhngn)

)]
= C +

N∑
n=1

[ ∑
gn<hn

(
p(gn)p(hn)

(
yn log(Bgnhn) + (1− yn) log(1−Bgnhn)

))
+
∑

gn≥hn

(
p(gn)p(hn)

(
yn log(1−Bhngn) + (1− yn) log(Bhngn)

))]

= C +
N∑

n=1

[ ∑
gn<hn

(
φpn→qn,gnφqn→pn,hn

(
yn log(Bgnhn) + (1− yn) log(1−Bgnhn)

))
+
∑

gn≥hn

(
φpn→qn,gnφqn→pn,hn

(
yn log(1−Bhngn) + (1− yn) log(Bhngn)

))]
We now take the derivative with respect to Bgh, assuming that g < h:

∂ELBO

∂Bgh

=
N∑

n=1

[
φpn→qn,gφqn→pn,h

(
yn
Bgh

− 1− yn
1−Bgh

)
+ φpn→qn,hφqn→pn,g

(
−yn

1−Bgh

+
1− yn
Bgh

)]
Setting this expression to 0, and solving forBgh, gives the following closed-

form solution:

B̂gh =

∑N
n=1 φpn→qn,gφqn→pn,hyn + φpn→qn,hφqn→pn,g(1− yn)∑N

n=1 φpn→qn,gφqn→pn,h + φpn→qn,hφqn→pn,g

6.2 Algorithm Implementations

Code for all algorithms can be found at:

https://github.com/kronosapiens/thesis
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6.2.1 PrefRank

PrefRank was implemented in Python and NumPy. PrefRank uses the
power method to find the principal eigenvector v1, iterating until the change
in vector dips below a preset threshold.

6.2.2 Prototype

Prototype was implemented in Python, using NumPy and pandas. Proto-
type uses the nested coordinate-ascent variational inference algorithm given
in Airoldi et al., 2008, with the number of iterations fixed in advance.

6.3 Datasets

6.3.1 MovieLens-100k

We now describe the way we generate pairwise preference data from the
MovieLens-100k dataset. At a high level, if a user u rated Mu movies, we
randomly sample 10 ∗Mu pairs of movies rated by that user. For each ran-
domly sampled pair, if the user gave different ratings to the 2 movies, we
add the user’s pairwise preference to our dataset. The exact algorithm is
shown in below. Importantly, we run the above process for both the training
data and the test data. We use the file ‘u5.base’ as our training set, and
‘u5.test’ as our test set, from the MovieLens-100k dataset, which we down-
loaded at http://grouplens.org/datasets/movielens/100k/. There are
80,000 ratings in this training set, and 20,000 ratings in this test set. After
running the above procedure on the training set, we separate 20% of the data
as heldout, and use the rest for training.

6.3.2 Data-generating Algorithm for MovieLens data

For a given user u, let Mu denote the set of movies rated by this user,
and let rum denote the rating user u gave to movie m.

• Let D = ∅, n = 1.

• For each user u ∈ U

– For n ∈{1, ..., 10 · |Mu|}
∗ Randomly select pn, qn ∈Mu, where pn < qn.
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∗ Let xn = (pn, qn, un), and yn = 1 [rupn < ruqn ]

∗ If (xn, yn) /∈ D and rupn 6= ruqn
· D = D ∪ (xn, yn).

· n = n+ 1.

6.3.3 All Our Ideas

All Our Ideas is an online platform enabling for the creation and distri-
bution of “wiki surveys” (Salganik and Levy, 2015) — in which users are
prompted to make pairwise preferences with items drawn from a dynamic
answer pool.

As an academic project, All Our Ideas makes raw survey data available
to download. These data include information about the candidate answers
and every comparison made, giving hashed IP addresses to preserve user
anonymity.

This survey we consider, which ran over the summer of 2012, was used to
answer a critical question: what beer to serve at the author’s undergraduate
going-away party. The survey considered 27 beers and had 1468 responses
from 17 IP addresses, with a majority of responses (1244) coming from a
single IP address (not the author’s).
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